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ABSTRACT  

  Here in this interesting paper is dedicated to find and generalize the famous Richard C. 

Tolman’s Schwarzschild interior solution in higher dimensions. This solution is very important 

and useful in understanding and discussing the internal construction of stars. Max Wyman’s 

generalization has been also discussed to some extent. Energy density  and pressure p have 

been found. These solutions can be matched at the boundary with the exterior solution (Myers 

and Perry, 1986).   

𝑑𝑠2 = [1 −
𝑊

𝑟𝐷−3
] 𝑑𝑡2 − [1 −

𝑊

𝑟𝐷−3
]
−1

𝑑𝑟2 

−𝑟2(𝑑𝜃1
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2+. . . . . + 𝑠𝑖𝑛2 𝜃1 . . . . 𝑠𝑖𝑛
2 𝜃𝑛 𝑑𝜃𝑛+1

2 ) 

where W related to total mass of the fluid inside a sphere of radius rb 
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1. INTRODUCTION  

  Einstein’s field equations which connect the distribution of matter and energy with the 

gravitational field (described by the potential gij) are 

 
ij ij ij ij

1
8 T R Rg g

2
     

 

               where Tij is the material energy momentum tensor, Rij. The Ricci tensor, R, the 

curvature invariant (or scalar curvature tensor) and  , the cosmological constant. The field 

equations being highly non-linear, the exact solutions are obtained only in a few special cases. 

Professor Richard C. Tolman [27] considered the problem which corresponds to an equilibrium 

distribution of perfect fluid and obtained solutions under some mathematical restrictions. Here 

we discuss and obtain higher dimensional generalization of Tolman’s (1939) solution which are 

significant in the study of the internal structure of stars.  



Page|103 

AFRICAN DIASPORA JOURNAL OF MATHEMATICS                    ISSN: 1539-854X 

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal )  https://mbsresearch.com/ 

Vol. 28 No. 2 (2025) : June   

       If we set = 0 in agreement with known fact that the cosmological constant is too 

small to produce appreciable effective within a moderate spatial range. The above Einstein’s 

field equations (with =0) may be written as  

 
ij ij ij

1
8 T R Rg

2
   

 

               Where velocity of light and gravitational constant is taken to be unity in the usual units.  

  The explanation of the smallness of the extra dimensions of the universe by the 

dynamical evolution of the latter has also been proposed in the case of a more realistic model 

(11-dimensional supergravity). Now the investigations in higher dimensions have been important 

in view of recent developments of superstring theory in which the space-time is considered to be 

of dimension higher than four. The generalization of solutions of Einstein’s field equations to 

higher dimensions thus has become necessary. Higher dimensional extension of Schwarzschild, 

Reissner – Nordstrom and Kerr solutions have been provided by Myers and Perry [20]. The 

Reissner-Nordstrom-de Sitter metric and Kerr-de Sitter metric has been obtained by Dianyan for 

higher dimensional space-time. Higher dimensional generalization of Schwarzschild interior, 

Floride’s [8] and Marder’s [18] solutions has been obtained by Krori et. al. [12, 13, 14], Shen 

and Tan [22, 23] have obtained higher dimensional generalization of interior Wyman’s ( = ra) 

solution [29] and global regular solution with equation of statue p +  = 0. The generalization of 

Mehra’s [19], Whittaker’s [28], Ibrahim-Nutku’s [9] solutions; solutions for superdense, 

disordered radiation, constant gravitational mass density; Adler [3], Kuchowicz’s [15, 16] and 

Bayin’s [4] solutions to higher dimensional space-time has been presented by Singh et. al. [25]. 

Some other workers in this field are Koikawa [11], Iyer and Vishveshware [10], Liddle et. al. 

[17], Chatterjee et. al. [5, 6], Singh and Yadav [26] Singh and Kumar [24] and Ahmed and 

Alamri [2]. 

  Here in the chapter, we find and generalize the famous Richard C. Tolman’s [27] 

solutions in higher Dimensional Generalization of Tolman’s Schwarzschild Interior Solution 

Energy density  and pressure p have been found. These solutions can be matched at the 

boundary with the exterior solution (Myers and Perry [20]). 

 

2. THE FIELD EQUATIONS 

  We take the static spherically symmetric metric for D = n+3-dimensional space-time in 

the form given by (Myers and Perry [20]. 

(2.1) 2 B 2 A 2 2 2 2 2

1 1 2ds e dt e dr r (d sin d ........         
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   2 2 2 2

1 2 n n 1..... sin sin ........sin d )      

where A = A(r) and B = B (r). Also  

 0 1 2 3

1 3x t,x r,x ,x       etc.  

  The Einstein field equations for D = (n + 3) dimensional space. time are  

(2.2)  
k

ij ij ij k

1
R 8 G(T g T )

D 2
   


 

The energy momentum tensor for matter is given by 

(2.3)  Tij = diag(ρ, −p, . . . . . . −p)⎵        
n+2

 

where  is the material density and p, are the pressure.  

In usual units, we take velocity of Hight c = 1 and gravitational constant G = 1. The field 

equations (2.2) for the metric (2.1) yield  

(2.4)  A

2 2

A n n 16
e

r r r (n 1)

   
    

 
 

 

(2.5)  A

2 2

B n n 16
e p

r r r (n 1)

   
   

 
 

(2.6)  
2

A

2 2

B B A B B nA n n
e 0

2 4 4 2r r r

       
      

 
 

(2.7)  
B

p (p ) 0
2


      
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We multiply equation (2.6) by 2/r and then arranging the terms, we obtain 

(2.8)  
A A B

A B

2

d n(e 1) d e B d e B
e 0

dr r dr 2r dr 2r

 
       

       
     

 

 

3. SOLUTIONS OF THE FIELD EQUATION 

  The general solution of equation (2.8) as such is difficult to obtain, therefore to make the 

equation (2.8) integrable, we use some judicious conditions on A or B or relation between A and 

B and then give resulting solution for eA, eB,  and p as functions of r which can be obtained by 

combining the new equation with (2.8), (2.4) and (2.5). Below we discuss the specific solution 

obtained by Tolman in higher dimensions 

4. EINSTEIN UNIVERSE IN HIGHER DIMENSIONS 

  Here we choose  

(4.1) eB = constant = k (say)  

  With this assumption equation (2.8) becomes immediately integrable because the second 

two terms vanish due to the constancy of eB and we get  

 

(4.2)  
A

2

d n(e 1)
0

dr r

 
 

 
 

which on integration yields   

A

2 2

n(e 1) 1
constant (say)

r R

 
    

which gives  

 

(4.3)  
2

2

r
e 1

nR

    
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Use of equation (4.1) in equations (2.5) and (4.3), we find pressure p as  

(4.4)  
2

(n 1)
p

16 R





 

Similarly, from equations (2.4) and (4.3), we find density  as 

(4.5)  
2

(n 2)(n 1)

16 nR

 
 


 

The resulting solution has found popularity in static cosmology. It is the analogue of static 

Einstein universe in higher dimension with uniform pressure and density. 

 

5. SCHWARZCHILD INTERIOR SOLUTION  

In this case-l 

    we assume  

 

(5.1)  
2

A

2

r
e 1

nR

  
  
 

 

which on substitution in (2.8) simplifies it since first term vanishes and we set  

 
A B

A Bd e B d e B
e 0

dr 2r dr 2r


     

    
   

 

which on integration finally provides the solution  

 

(5.2)  

2
1/ 2

2
B 2

2

r
e nkR 1

nR

  
     
   

 

where  and k are constants Now using equation (5.1) and (5.2) in (2.4) and (2.5) the pressure 

and density are found to be 

(5.3)  

1/ 2
2

2

2 2

(n 1) r
p (n 2)kR 1

16 R nR

  
     

    
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1
1/ 2

2
2

2

r
nkR 1

nR



  
    
   

 

(5.4)  
2

(n 1)(n 2)

16 nR

 
 


 

The solution can be considered as higher dimensional analogue of well-known Schwarzschild 

interior solution for a fluid sphere of constant density. When k = 0, the solution provides higher 

dimensional analogue of Einstein universe as obtained in  

Case-II 

When  = 0, we find  

(5.5)  

2 2
A B

2 2

r r
e 1 and e constant 1

nR nR

    
      
   

 

which is higher dimensional analogue of de-Sitter universe. 

 

Case - III 

  In this case we take  

(5.6)  
B B

e
2r


 constant 

With this, the third term of equation (2.8) vanishes and we get  

(5.7)  

A A

2

d e 1 d e B
0

dr r dr 2r

     
    

   
 

  
A A

2

(e 1) e B
n

r 2r

  
   (constant) 

Integrating (5.6) we get 

(5.8)  

2
B 2

2

r
e 1

 
   

 
 (,  are constants) 

Which on combination with (5.7) finally gives  
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(5.9)  

2

2
A

2 2

2 2

(n 1)r
1

ne
r r

r 1
nR

 
 

 
   

    
   

 

On substituting 
Ae ,A and B   from (5.8) and (5.9) we can easily find p and  from equations 

(2.4) and (2.5) as  

(5.10)  

2 2

2 2

2 2

2

(n 2)r
1

16 1 R nRp
(n 1) (n 1)r

1
n

  
  

  
    

  
  

 

(5.11)  

2 2

2 2

2 2

2

(n 2) (n 2)r
1

16 1 nR nR
(n 1) (1 n)r

1
n

   
  

   
    

  
  

2

2

22 2

2

r
1

2 nR

(1 n)r
1

n

 
 
 
     

   

 

The line element describing this solution can be written using eA and eB in equation (2.1) 

  At the centre of sphere, the pressure (pC) and density (C) can be found by putting r = 0 in 

equations (5.10) and (5.11) and they are  

(5.12)  
C 2 2

1 1 (n 1)
p

A R 16

  
   

  
 

and  

(5.13)  
C 2 2

2 1 1 (n 1)
1

n A R 16

   
      

   
 

The equations (5.10) – (5.13) can be combined in the convent simple form given by 

(5.14)  

2

C
C C

C C

4(n 1)(p p)
(n 4)(p p)

n( p )

 
      

 
 

Which is known as equation of state connecting the density and pressure of the fluid inside the 

sphere.  

  At the boundary of the sphere the pressure drops to zero and the boundary density b has 

the value for equation (5.14) 
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(5.15)  

2

c
b C C

C C

4(n 1)p
(n 4)p

n( p )


    

 
 

From equation (5.10) we find that at the boundary r = rb of sphere (where p = 0), we have  

(5.16)  

1/ 2
2

b 2

n
r R 1

(n 2) R

  
   

   
 

It is clear that with R2 > 2, the pressure and density of the fluid fall from their central to their 

boundary values where the density still remains positive. 

  The solution may be a useful one in studying properties of spheres of compressible fluid 

in higher dimensions since the equation of state (5.14) is relatively simple. 

 These solutions can be matched at the boundary r = rb with the exterior solution (Myers 

and Perry [20]) 

(5.17)  

1

2 2 2

D 3 D 3

W W
(ds 1 dt 1 dr

r r



 

   
      
   

 

  2 2 2 2 2 2 2

1 1 2 1 n n 1r d sin d ..... sin ....sin d            

where w related to total mass of the fluid inside a sphere of radius rb given by 

(5.18)  D 2

1
M W(D 2)C

2
   

were  

(5.19)  
(D 2) / 2

D 2C 2 (D 1)/ 2

     
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