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ABSTRACT : 

  The present paper provides an exact static spherically symmetric solution of Einstein’s 

field equations using the equation of state  = 3p and also with judicious choice of metric 

potential g44. We have also found and discussed various physical and geometrical properties of 

the model.  
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1. Introduction  

  Various authors have focussed on study of a state in which radiation is concerned in 

general relativity. A static cylindrically symmetric perfect fluid solution describing disordered 

radiation having p = 1/3 was obtained by Teixeira. Wolk and Som [21] and Kramer [8]. In these 

solutions the cylinder of fluid was radially infinite and the fluid possessed finite pressure and 

density everywhere, decreasing monotonically to zero outwards. The gij in these static cases 

involved simple algebraic functions only. 

  The system of an electromagnetic radiation involving only under involving only under 

influence of its own gravitation and pressure effects has been one of the most fascinating 

physical system described by general relativity. In this line Klein [7] obtained an approximate 

solution of Einstein’s equation for a distribution of diffused radiation with spherical symmetry, 

which he presented as a set of series expansions. This distribution in equilibrium shows 

maximum condensation at the centre and dilutes monotonically to a zero value at infinity. 

However his solution at infinity does not coincide with the vacuum solution of Schwarzschild 

[17]. Now stationary inhomogeneous solutions to Einstein’s equation for an irrolational perfect 

fluid have featured equations of state p = p [12, 13, 19, 24],       p =  + const. [1]. P = , ( = 
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const.) [23] and p = 1/3  [6, 8]. The solutions with equation of state p = 3 obtained by 

Feinstein and Senovilla [6] is not the same as that for the case  = 1/3 derived by Wainwright 

and Goode [23] although in both solutions gij depends on simple hyperbolic functions of a space 

co-ordinate and a time co-ordinate. Again the solutions have p = 1/3 given recently by Feinstein 

and Senovilla [6] is dinstinct from the previous solutions and depends only on hyperbolic 

functions.  

  The general relativity finds in interesting application to an investigation of state in which 

radiation is concentrated around a star. Raj Bail and Jain [16] have obtained magnetostatic 

models filled with dust and disordered radiation in which the distribution is that of perfect fluids 

[10]. Singh and Abdussattar [18] and Purushottam and Yadav [15(a)]. Obtained an exact solution 

of Einstein’s field equations for a homogeneous perfect fluid core surrounded by a frozen photon 

field. Teixeira et. al. [20] obtained an exact solution of an unbounded plane symmetric 

distribution of disordered radiation. 

  Similar to Klein’s sphere their slab distribution shows a larger condensation in the 

innermost regions and dilutes monotonically to a vanishing distribution Outwards, tending 

acsymptotically to the plane vacuum solution of Levi – Vivita [11]. They have also obtained an 

exact solution for a distribution of disordered radiation with cylindrical symmetry in equilibrium 

(1977]. Davidson [2] has presented a solution that provides a non-stationary analog to the static 

case when p = 1/3, again depending only on algebraic functions of the space co-ordinate r and 

time co-ordinate t. It is interpreted as an expanding perfect fluid cylinder of infinite radius. The 

solution can be described as cosmological in the sense that it starts from big-bang infinites but is 

subsequently well behaved everywhere. In particular, for t > 0 both p and  are positive and 

finite while monotonically decreasing to zero when either r or increase to infinity. This solution 

is not contained in any of previous solutions. In view of the still uncertain origin of our universe 

leading to its present high degree of homogeneity and isotropy, it seems worthwhile to confirm 

that general relativity contains cylindrically symmetric solution that starts from big bang 

conditions and evolve globally in physically reasonable manner. Such inchonomogeneous 
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solutions extend the possibilities for characterization of the universe in the neighbourhood of the 

big bang even.  

  Here in the chapter we have obtained an exact, static spherically symmetric solution of 

Einstein’s field equations using the equation of state  = 3p and also with a suitable choice of 

metric potential ev. We have also found various physical and geometrical properties of the 

model.  

2. The Field Equations and Their Solutions 

  We take the metric in the form  

(2.1) 
2 2 2 2 2 2 2 2ds e dt e dr r d r sin d         

where  and  are functions of r only the field equations. 

(2.2) 
i i i

j j j

1
R R 8 T

2
     

  For the metric (2.1) and (Tolman [21]) 

(2.3) 

1
1

1 2 2

1 1
8 T e

r r r

  
     

 
 

(2.4) 

2
2 3

2 38 T 8 T e
2 4 4 2r

            
         

 
 

(2.5) 
4

4 2 2

1 1
8 T e

r r r

  
    

 
 

  Where a prime denotes differentiation with respect to r. throughout the investigation we 

set velocity of light c and gravitational constant k to be unity. A disordered distribution of 

radiation can be regarded as a perfect fluid having the energy momentum tensor.  

(2.6) 
1 i i

1 j jT ( p)u u p    

characterized by the equation of state  

(2.7) 3p   
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 We use commoving co-ordinates so that  

 
1 2 3 4 /2U u u 0 and u e      

The non-vanishing components of the energy momentum tensor are  

 
1 2 3 4

1 2 3 4T T T p and T       

  We can then write and field equation  

(2.8) 
2 2

1 1
8 p e

r r r

  
    

 
 

(2.9) 

2

8 p e
2 4 4 2r

            
     

 
 

(2.10)  
2 2

1 1
8 e

r r r

  
    

 
 

  Using equation (2.7), (2.8) and (2.10) we have  

(2.11)  
2 2 2 2

1 1 1 1
3e e

r r r r r r

      
       

   
 

  From (2.11) we see that if  is known,  can be obtained.  

So we choose  

(2.12)  
2e Dr   

  Where D is constant. 

  Equation (2.12) reduces (2.11) to the for  

(2.13)  
2 2 2 2 2

2 1 3 1 1
3e e

r r r r r r

     
       

   
 

  which may be further reduced to  

(2.14)  e r 10e 4 0 

     

  We put y e so that the equation (2.13) is changed into the form. 
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(2.15)  
dy 10y 4

dr r r
   

  Which is a linear differential equation whose solution is  

(2.16)  
10

2 c
y

5 r
   

  Therefore we get  

(2.17)  
10

2 c
e

5 r

    

  Where c is constant  

Consequently the metric (2.1) can be put into the form. 

(2.18)  

1

2 2 2 2 2 2 2 2

10

2 c
ds Dr dt dr r (d sin d )

5 r



 
        

 
 

  Absorbing the constant D in co-ordinate differential at the metric (2.18) goes to the form. 

(2.19)  

1

2 2 2 2 2 2 2 2

10

2 c
ds r dt dr r (d sin d )

5 r



 
        

 
 

  The non vanishing component of Riemann-Christoffel Curvature tensor Rhijk for the 

metric (2.19) are  

(2.20)  1212 10

100c
R

2r 5g



 

   
12

2424 10

5r
R

(2r 5c)



 

   

2

1313 10

25sin
R

2r c





 

   1414 10

25c
R

r(2r 5c)



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2 2

3434 10

5sin r
R

(2r 5c)


 


 

   

12 2

2323 10 5c

5r sin
R

2r 


  

Choosing the orthonormal tetrad i as  

(2.21)  

1/2
10

(1) 10 5c

5r
1 (0,0,0)

2r 

 
   

 
 

   (2)

1
1 0, ,0,0

r

 
   

 
 

   (3)

1
1 0, ,0

rsin

 
   

 
 

  (4)

1
1 0,0,0

r

 
   

 
 

The physical components R(abcd) of the curvature tensor defined by 

(2.22)  
i j k

(abcd) (a) (b) (c) (d) ijkR R      

are  

8

(1212) 10 2

500Cr
R

(2r 5c)



 

5

(2424) 10

5r
R

2(2r 5c)



 

8

(3131) 10 2

125r
R

(2r 5c)



 

7

(1414) 10 2

125cr
R

2(2r 5c)



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(3434) 4 10

5
R

2r (2r 5c)



 

8

(2323) 10

2r
R

2r 5c



  

We see that (abcd)R 0 as r .  If follows that the space time is asymptotically homoloidal. 

Also for the metric (2.19) the fluid velocity ui is given by 

(2.23)  u1 = u2 = u3 = u1 = u3 = 0  

and 
4

4

1
u ,u r

r
   

The scalar of expansion = ui; I is  

  identically zero. The non vanishing components of the tensor of rotation wij defined by 

(2.24)  wij = ui, j – uj , i 

are  

(2.25)  w14 = – w41 = – 1 

 The components of the shear tensor ij defined by 

(2.26)  ij i j,i ij

1 1
(u j u ) h

2 3
     

with the projection tensor  

 ij ij 1 jh g u u   

are  

(2.27)  14 41

2

5
      

The other components being zero. 

3. Solutions the perfect fluid Core 

  Pressure and density for metric (2.19) are  



Page|99 

AFRICAN DIASPORA JOURNAL OF MATHEMATICS                    ISSN: 1539-854X 

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal )  https://mbsresearch.com/ 

Vol. 28 No. 2 (2025) : June   

(3.1) 

10

12

8 r 15c
8 p

3 5r

 
    

(3.2)  

2
2 0

10

0

r
R

3 c

5 r


 

 
 

 

 

2
2 2 0
0 2

o

r
r R 1

R
A

r

 
  

   

 

1/2
2 2

0

2

0

R r
B 1

r R

 
  

 
 

 

2
10 0
0 2

3 r
C r

5 R

 
  

 
  

and the density of core  

(3.3)  

10

0

0 10

0

2

0

3 r
3

5 r

5 r

8 ,r

 
 
  
 
 
 

 

which complete the solution for the perfect fluid core of radius r0 surroundes by the fluid with  

= 3p. 

4.  Discussion  

  Here we have obtained exact solution for static spherically symmetric solution using 

equation of state  = 3p (disordered radiation). We have also given solution for the perfect fluid 

core. Such type of investigations where radiation is concerned around a star is much useful and 

interesting is general relativity. 
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