UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

Some Anisotropic Spherically Symmetric Static Solutions Filled with Ferro Fluid

Bv:

Dr. ARBIND KR. SINHA

and

PUJA KUMARI

HOD Mathematics,

Cum Principal, G.J. College,

Rambagh, Bihta (P.P.U)

Research Scholar Deptt. of Mathematics

Patliputra University, Patna

ISSN: 1539-854X

ABSTRACT:

The present paper provides some static solutions of Einstein-Maxwell's equations for

anistropic ferrowfluid using spherically symmetric metric under different specific conditions.

Various physical and geometric features have been found and discussed.

Key Words: Anisotropic, ferrowfluid, density, spherical symmetry, metric.

1. Introduction

A pretty number of researchers have found their interest in generating solutions of

Einstein-Maxwell field equations which are very useful and relevant in general relativity [8, 9,

13]. These solutions provide deep knowledge of space-time and furthermore these are not

connected to a specified choice of parameters and basic conditions. The latest survey of isotropic

solutions of Einstein's field equations for spherical symmetry was given by Krammer et. al. [9].

Further Yodzis et. al. [17] presented a solution which provides naked singularities in the

spherical gravitational collapse of anisotropic matter. Bowers and Liang [4] have investigated

and discussed anisotropic spheres with useful impacts in astrophysics. A useful technique to

obtain interior solutions of Einstein's equations for anisotropic matter from known solutions of

such matter was established by Cosenza et. al. [6]. Stewart [16] has presented a large class of

anisotropic interior solutions for static conformally flat spherically symmetric metric with a

feedom to choose the functional form of mass distribution. A comparision of properties between

isotropc and anisotropic spheres have been evolved by Cosenza et. al. [7] and Bayin [2]. Punce

de Leon [13, 14] has provided various solutions applying new methods. Berman [3] has found an

Vol. 28 No. 2 (2025): June

Page|76

ISSN: 1539-854X

ugc care group I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/anisotropc cosmological solution considering Bianchi type — I space-time metric. Naharaj and Martens [11] have explored a class of interior solutions with homogeneous density source and a specified form of radial pressure Coley and Tupper [5] have prove that the anisotropc fluid space times using covariantly constant vector must satisfy many strong conditions.

In this paper we have presented some static solutions of Einstein-Maxwell's field equations for anisotropic ferrowfluid system using spherically symmetric space-time under different specific conditions. Various physical and geometrical features have been ferend and discussed.

2. The Field Equations

We take static spherically symmetric metric given by

(2.1)
$$ds^{2} - e^{\lambda}dr^{2} - r^{2}d\theta^{2} - r^{2}d\theta^{2} - r^{2}\sin^{2}\theta d\phi^{2} + e^{\nu}dt^{2}$$

where λ and ν are functions of r alone

The stress energy tensor for anisotropic ferrow fluid (AEF) is given by (Herrera et. al. 1984)

(2.2)
$$T^{ab} = (\rho + p_R + 2m) \nu^i \nu^j - (P_T + m) g^{ij}$$

$$+ (P_R - P_T - 2m) H^i H^j$$

Where symbols have their usual meanings and Hi is the unit space like magnetic vector with

(2.3)
$$v^i v_i = 1, v^i H_i = 0, H^i H_i = -1,$$

(2.4)
$$H_i = h_i / h, h_i = hH_i \Rightarrow h^i h_i = -h^2$$

and

(2.5)
$$2m = \mu h^2$$

where μ is magnetic permeability, ν_i is 4-velocity of fluid, h^2 is the magnitude of the magnetic field vector H_i .

The magnetic field part in the charted fluid with variable magnetic permeability is subject to satisfy Maxwell's equations given by (Ray and Banergy, 14(a))

Vol. 28 No. 2 (2025): June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

(2.6)
$$\left[\mu h\left(\nu^{i} H^{i} - \nu^{j} H^{i}\right)\right]; j = 0$$

The attention is confined to the commoving coordinate system for which flow vector v^i and magnetic field vector H^i have expressions.

(2.7)
$$v^{i} = \delta_{4}^{i} e^{-v/2}$$
,

(2.8)
$$H^{i} = \delta_{4}^{i} e^{-\nu/2}$$
,

Thus under commoving system the Maxwell equations (2.6) are solved by using (2.3) and (2.4) to evaluate the magnitude of the magnetic field h^2 and variable magnetic permeability μ as

(2.9)
$$h^2 = \psi^4 / r^4$$

(2.9a)
$$\mu = \phi^2 / \psi^2$$

where ϕ is constant of integration and ψ is function of r. Therefore the equation (2.5) provides the value

(2.10)
$$m = (1/2)\mu h^2 = (1/2) \left[\left(\phi^2 \psi^2 / r^4 \right) \right]$$

The assumption of static spherical symmetry under commoving coordinate system restricts the components of the stress-energy tensor (2.2). Accordingly we have

$$T_1^1 = -(P_R - m),$$

$$T_2^2 = -(P_r + m) = T_3^3$$

and
$$T_4^4 = (\rho + m)$$

Thus the Einstein field equations for the anisotropic ferrofluid system $R_{ij}-\frac{1}{2}Rg_{ij}=-KT_{ij} \text{ described through the energy momentum tensor (2.2) generates the following equations}$

(2.11)
$$K(P_R - m) = e^{-\lambda} [(v'/r) + (1/r^2)] - 1/r^2$$
,

Vol. 28 No. 2 (2025): June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

$$(2.12) \quad K(P_r + m) = e^{-\lambda} \left\lceil (\nu''/2) - (\lambda'\nu'/4) + \left({\nu'}^2/4\right) + \left({\nu'} - \lambda'/2r\right) \right\rceil,$$

(2.13)
$$K(\rho + m) = e^{-\lambda} [(\lambda'/r) - (1/r^2)] + 1/r^2,$$

Here the prime denotes derivative with respect to r

The sum of equation (2.11) and (2.13) gives

(2.14)
$$K(\rho + P_R) = e^{-\lambda} [(\lambda'/r) + (\lambda'/r)] e^{-\lambda} [(\nu' + \lambda'/r)]$$

On subtracting the equation (2.12) from the equation (2.11) we have

(2.15)
$$K(P_R - P_r) = 2Km - e^{-\lambda}$$

$$\left[v'/2 \right] + \left(v'^2/4 \right) - \left(\lambda' v'/4 \right) - \lambda'/2r - v'/2r - 1/r^2 \right] - 1/r^2$$

On differentiating the equation (2.4) with respect to r and using the equation (2.10) one can get

(2.16)
$$KP'_{R} = e^{-\lambda} \left[(v''/r) - (v'/r^{2}) - 2/r^{3} - (\lambda'v'/r) - \lambda'/r^{2} \right] + 2/r^{3} + \left[(2/r) - (\psi'/\psi) \right] (-2Km)$$

Further using the equation (2.15) we find

(2.17)
$$KP'_{R} = -(1/2)e^{-\lambda}v'(\lambda'v')/r - K(P_{R} - P_{r})(2/r) + 2Km(\psi'/\psi)$$

Thus the equation (2.14) and (2.16) provide

$$(2.18) P'_{R} + (\rho + P_{R})(v'/2) + (P_{R} - P_{r})(2/r) - (\phi^{2}\psi\psi/r^{4}) = 0$$

This equation describes the factors affecting the rate of variation in radial pressure.

3. Solution of the Field Equations

Model - I

Here we start with a physical plausibility that the matter distribution consists of an ionized imperfect gas satisfying the equation of state $P_R \propto \rho$. This situation can be well described through the setting

$$(3.1) \quad \mathbf{K}_{o} = \alpha \mathbf{e}^{-\lambda} / \mathbf{r}^{2}$$

Vol. 28 No. 2 (2025) : June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

(3.2)
$$KP_{R} = \beta e^{-\lambda} / r^{2}$$
,

where α and β positive constants. The value of v is obtained by integration of equation (2.14) as

(3.3)
$$v = K \int (\rho + P_R) e^{\lambda} r dr - \lambda + \log k_1,$$

where k_1 is a constant of integration.

The equation (3.1) and (3.2) simplify equation (3.3) to

(3.4)
$$v = \log(k_1 r^k e^{-\lambda}),$$

where $k = \alpha + \beta$

By making use of the values of m and P_R from equation (2.10) and (3.2) in equation (2.15), we get

(3.5)
$$r^2 e^{-\lambda} (\lambda'' - \lambda'^2) + (3/2) k r e^{-\lambda} \lambda' - (1/2) (k^2 - 4i - 4) e^{-\lambda} = 2 - 2 K P_r r^2 - 2 K (\phi^2 \psi^2 / r^2)$$

Now to solve the field equations, we have two cases

Case I:

He we suppose that tangential pressure be expressed in the form

(3.6)
$$KPT = k_2 e^{-\lambda} / r^2$$

with k₂ as constant.

This shows that $P_T \to 0$, as $r \to \infty$

By choosing $y = e^{-\lambda}$ the equation (3.5) reduces to

(3.7)
$$r^2y'' + (3/2)kry' + (1/2)(k^2 - 4i - 4k_2 - 4)y = 2K(\phi^2\psi^2/r^2) - 2$$

By choosing new variable z as $r = e^{Z}$ leads the equation (3.7) to

(3.8)
$$d^{2}y/dz^{2} + (1/2)(3k-2)dy/dz + (1/2)(k^{2}-4\alpha-4k_{2}-4)$$
$$y = 2K(\phi^{2}\psi^{2})e^{-2z} - 2$$

Vol. 28 No. 2 (2025): June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

This equation provides the general solution in the form given by

(3.9)
$$y = Ae^{P1z} + Be^{p2z} + k_3 + k_4e^{-2z}$$

where A and B are constants of integration and P₁, P₂, k₃, k₄ are constants given by

(3.10)
$$P_1 = -(1/4) \left[3k - 2 - \sqrt{k^2 + 20\alpha - 12\beta + 36 + 32k_2} \right]$$

(3.11)
$$P_2 = -(1/4) \left[3k - 2\sqrt{k^2 + 20\alpha - 12\beta + 36 + 32k_2} \right]$$

$$(3.12) k_3 = -4/(k^2 - 4\alpha - 4k_2 - 4)$$

$$(3.13) k_4 = 4K(\phi^2 \psi^2) / (k^2 - 10\alpha - 6\beta - 4k_2 + 8)$$

(3.14)
$$y = e^{-\lambda} = Ar^{p1} + Br^{p2} + k_3 + k_4 / r^2$$

The value of e^{v} is is then obtained from the equation (3.4) as

(3.15)
$$e^{v} = k_1 \left[Ar^{p1-C} + Br^{p2+C} + k_3 r^{C} + k_4 r^{(C-2)} \right]$$

Hence the space-time metric in this case reads as

$$(3.16) ds^{2} = -\left[Ar^{P_{1}} + Br^{P_{2}} + k_{3} + k_{4} / r^{2}\right]^{-1} dr^{2} - r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) + k_{1} \left[Ar^{P_{1}+C} + Br^{P_{2}+C} + k_{3}r^{C} + k_{4}r^{(C-2)}\right] dt^{2}$$

This describes the static spherically symmetric model consistent with the ferrofluid system.

Implications of the solution (3.16)

1. The physical requirements

(3.17)
$$\rho \ge 0, R_R \ge 0, P_T \ge 0.$$

Imply the conditions on α , β and k_2 as

$$(3.18) \alpha \ge 0, \beta \ge 0, k_2 \ge 0$$

Vol. 28 No. 2 (2025) : June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

2. the values of kinematical parameters associated with time like unit flow vector v^i corresponding to (3.16) are given by

(3.19) Expansion:
$$v_1^2 = 0$$

(3.20) Shear :
$$\sigma^2 = 0$$
,

(3.21) Rotation :
$$\omega^2 = 0$$
,

(3.22) Acceleration
$$\equiv v^2 = -(v'^2/4)e^{-\lambda}$$

where v is given by the equation (3.15) and $e^{-\lambda}$ by the equation (3.14).

- 3. the choice $\beta = k_2$ implies that the radial and tangential pressures are equal. The restriction $\beta = k_2 = 0$ leads the solution (3.16) to a dust filled universe. The selection $\alpha = 3/3 = 3k_2$ procures the radiating model. When one identifies $\alpha = \beta = k_2$, then it reduces to a super dust model.
- 4. the metric (3.16) with $\beta = -\alpha = k_2 = 0$ and $k_1 = 1$ assumes the solution in the form

(3.23)
$$ds^{2} = -\left[1 + Ar^{2} + B/r + K\phi^{2}\psi^{2}/2r^{2}\right]^{-1}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) + \left[1 + Ar^{2} + B/r + K\phi^{2}\psi^{2}/2r^{2}\right]dt^{2}$$

This describes the static exterior field of the anisotropic ferrofluid distribution.

5. For A = 0 the solution (3.23) reduces to Reissner-Nordstrom metric describing the gravitational field in the exterior region of a infinitely conducting static sphere which has the metric form

(3.24)
$$ds^{2} = -\left[1 + (B/r) + K\phi^{2}\psi^{2}/2r^{2}\right]^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) + \left[1 + (B/r) + K\phi^{2}\psi^{2}/2r^{2}\right]dt^{2}$$

6. A metric (3.23) with $A = 0 = \phi = \psi$ generates the well known Schwarchild's exterior solution

(3.25)
$$ds^2 = -[1 + (B/r)]^{-1}dr^2 - r^2(d\theta^2 + \sin^2\theta d\phi^2) + [1 + (B/r)]dt^2$$

Vol. 28 No. 2 (2025) : June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

7. A metric (3.23) reduces to deSitter's model for a static homogeneous universe for the substitution $B = 0 = \phi = \psi$ given by

(3.26)
$$ds^{2} = -\left[1 + Ar^{2}\right]^{-1}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) + \left[1 + Ar^{2}\right]dt^{2}$$

8. The selection A = B = 0 reduces to solution (3.23) to the line element characterizing gravitational field of an electron (Eddington, 8).

(3.27)
$$ds^{2} = -\left[1 + K\phi^{2}f^{2} / 2r^{2}\right]^{-1}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) + \left[1 + K\phi^{2}f^{2} / 2r^{2}\right]dt^{2}$$

9. The treatment B = 0 in the metric (3.23) generates the line element as obtained by Aherkar and Asgekar [1] representing a static spherically symmetric space time model for the universe filled with the magnetofluid.

(3.28)
$$ds^{2} = \left[1 + Ar^{2} + k\varphi^{2}\psi^{2} / 2r^{2}\right]^{-1} dr^{2} - r^{2}$$
$$\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right) + \left[1 + Ar^{2} + k\varphi^{2}\psi^{2} / 2r^{2}\right] dt^{2}$$

Case 2:

Here we suppose that the tangential pressure has the form as

(3.29)
$$P_T = r^{C_5} \left[rF_1' + r(\log r)^2 (F_1' + rF_1'') + k_6 rF_1' \log r \right]$$

where F₁ is any arbitrary function of r and the constants k₅ and k₆ are

(3.30)
$$k_5 = (3/4)(k-2) + (1/4)\sqrt{4\alpha + 36\beta - 5k^2 + 12}$$

(3.31)
$$k_6 = (1/2)\sqrt{4\alpha + 36\beta - 5k^2 + 12}$$

Thus the equation (3.5) reduces to

(3.32)
$$r^2y'' + (3/2)kry' + (1/2)(k^2 - 4\alpha - 4)y = 2K(\phi^2\psi^2)$$

 $-2 + K_r^{C_5+2} \left[rF_3' + r(\log r)^2 (F_3' + rF_1'') + k_6 rF_1' \log r \right]$

Vol. 28 No. 2 (2025) : June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

where $y = e^{-\lambda}$

on putting $r = e^2$ this gives

$$(3.33) d^2y/dz^2 + (1/2)(3k-2)dy/dz + (1/2)$$

$$(k^2 - 4\alpha - 4)y = 2K(\phi^2\psi^2)e^{-2z} - 2 + 2Ke^{(C_5+2)}[\eta'' + k_6\eta']$$

where $\eta(z)$ is the value of $E_1(r)$ obtained by putting $r = e^{z}$.

This equation (3.33) admits the general solution in the form

(3.34)
$$y = \overline{\alpha}e^{P}3^{z} + \overline{\beta}e^{P_{4z}} + k_{7} + k_{8}e^{-2z} - 2Ke^{[C_{5}+2)z}\eta$$
,

where $\overline{\alpha}$ and $\overline{\beta}$ are constants with

(3.35)
$$P_3 = -(1/4) \left[(3k-2) - \sqrt{k^2 + 20\alpha - 12\beta + 36} \right],$$

(3.36)
$$P_4 = -(1/4) \left[(3k-2) + \sqrt{k^2 + 20\alpha - 12\beta + 36} \right],$$

(3.37)
$$k_7 = -\left[4/(k^2 - 4\alpha - 4)\right]$$

and

(3.38)
$$k_8 = 4K(\phi^2\psi^2)/(k^2+10\alpha-6\beta+8)$$

On putting $e^2 = r$ in the equation (3.34) gives

(3.39)
$$y \equiv e^{-\lambda} = \overline{\alpha} r^{p_3} \overline{\beta} r^{p_4} + k_7 + k_8 / r^2 - 2K r^{(C_5+2)} F_1.$$

The value of e^{λ} is then obtained from the equation (3.4) as

$$(3.40) \ e^v = k_1 \left\lceil \overline{\alpha} r^{P_3 + C} + \overline{\beta} r^{p_4 - C} + K_7 r^C + K_8 r^{C - 2} - 2K r^{(C_5 - C - 2)} F_1 \right\rceil$$

Hence the space-time metric in this case is given by

(3.41)
$$ds^{2} = -\left[\overline{\alpha}r^{P_{3}} + \overline{\beta}r^{P_{4}} + k_{7} + k_{8} / r^{2} - 2Kr^{(C_{5}+2)}F_{1}\right]^{-1}$$
$$dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) +$$

Vol. 28 No. 2 (2025) : June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

$$k_{_{1}}\Big[\overline{\alpha}r^{_{P_{_{3}}+C}}+\overline{\beta}r^{_{P_{_{4}}-C}}+k_{_{7}}r^{_{C}}+k_{_{8}}r^{_{(C-2)}}-2Kr^{_{(C_{_{5}}+C+2)}}F_{_{1}}\Big]dt^{^{2}}$$

This presents a metric structure explaining the geometrical format of the anisotropic ferrofluid system under some special choice of the function F_1 .

Remarks:

For the model (3.41) the flow is essentially accelerating with the value

(3.42)
$$v^{*2} = -(v'^2/4)e^{-\lambda}$$

Where v is given by (3.40) $e^{-\lambda}$ by the equation (3.39).

4. Case 2: (Model II)

By taking the first integral of the differential equation (2.13) the value of $e^{-\lambda}$ is written as

(4.1)
$$e^{-\lambda} = 1 - (1/r) \int \left[Kr^2 \rho + K \left(\phi^2 \psi^2 / 2r^2 \right) \right] dr$$

with a view to simplify this the matter density is expressed in learns of arbitrary function t(r) through a reasonable format

(4.2)
$$\rho = t'/r^2$$

and

$$(4.3) \quad \psi^2 = r^2 \lambda'$$

This selection with the equation (4.1) provides

(4.4)
$$e^{-\lambda} = T / 2r^2$$

where

$$(4.5) \quad T = -2Krt + 2r^2 - K\phi^2 r\lambda$$

Further by utilizing this value of $e^{-\lambda}$ and the equation (2.10) in the differential equation (2.11) the expression for ν' is deduced as

(4.6)
$$v' = (1/Tr) \left[2r^2 + Kkr^4 P_R - K\phi^2 \psi^2 \right] - (1/r)$$

Vol. 28 No. 2 (2025): June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

With a objective to find the integral of differential equation (4.5) the value of radial pressure P_R is selected in a specific form, say

(4.7)
$$P_R = \in' T / 2R^3$$

where \in is any arbitrary function of r. Thus by introducing this value of P_R in the equation (4.5) and after integrating both sides with respect to r, the parameter v is evaluated as

(4.8)
$$v = \int (1/Tr) \left[2r^2 - K\phi^2 \psi^2 \right] dr + K \in -\log r$$

where the constant of integration is taken as zero. Under all the imposed plausible restrictions a class of space time models in terms of unknown functions T(r) and $\in (r)$ is given by

(4.9)
$$ds^{2} = -(2r^{2}/T)dr^{2} - r^{2}(d\theta^{2} + \sin\theta d\phi^{2}) +$$
$$(1/r)e^{k\epsilon} \exp\left[\int (1/Tr)(2r^{2} - K\phi^{2}\psi^{2})dr\right]dt^{2}$$

Also the value of tangential pressure P_T is derived in terms of these functions, by using the equation (4.2), (4.6) and (4.7) in the equation (4.13), in the form

$$(4.10) P_{r} = (T\psi''/4r^{2}) + (KT\psi'^{2}/8r^{2}) +$$

$$[(T'/4r^{2}) + (Kt'/4r) - (3T/8r^{3}) + (1/4r) - (K\phi^{2}\psi\psi'/8r^{3})] \in'$$

$$+t'[(1/2T) - (1/4r^{2}) - (K\phi^{2}f^{2}/4r^{2})] - (\phi^{2}\psi\psi'/2r^{3}) = 0.$$

By evaluating all the values of kinematical parameters with respect to the metric (4.8) it is noticed that the flow is essentially accelerating with the magnitude given by

$$v^{*2} = (T/8r^2)[(K/Tr)(2rt + \phi^2\lambda - \phi^2\psi^2) + K \in]^2$$

or

$$v^{*2} = -(T/8r^2)[(K/Tr)(2rt + \phi^2\lambda - \phi^2r^2\lambda') + K \in ']^2$$

Some interesting particular cases of (4.8) involving different choices of t(r) are discussed below:

Vol. 28 No. 2 (2025) : June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

Case A: The choice

(4.11)
$$t = (t/K) - (\phi^2 \lambda/2)$$
,

Leads the radial pressure P_R to vanish.

Moreover for the choice the metric (4.8) becomes singular hence it is physically unacceptable.

Remarks:

The value \in = constant also yields that the radial pressure is zero.

Case B : If the value of t is chosen in terms of unknown function $\zeta(r)$ as $t = (r/K) - (\phi^2 \lambda/2) + (\zeta/\zeta') \Big((\phi^2 \lambda'/2) - (1/K) \Big),$

or

(4.12)
$$t = (r/K) - (\phi^2 \lambda/2) + (\zeta/\zeta') ((\phi^2 \psi^2/2r^2) - (1/K)),$$

Then the line element (4.8) gets reduced to

(4.13)
$$ds^{2} = (\zeta / \zeta') \Big[(K\phi^{2}\lambda' / 2r) - (1/r) \Big]^{-1} dr^{2} - r^{2} \Big(d\theta^{2} + \sin^{2}\theta d\phi^{2} \Big) + (\zeta / r) e^{K\epsilon} dt^{2}$$

Also the value of matter density ρ is given by

(4.14)
$$\rho = -(\zeta \zeta'' / 2Kr^2 \zeta'^2) (K\phi^2 \lambda' - 2) + (K\phi^2 \lambda'' / 2Kr^2) (\zeta \zeta'),$$

5. Case 3: (Model III)

In the phase, with a view to develop a new class of models pertaining to the field equations (2.11) to (2.13) a special choice of radial and tangential pressures P_R and P_T is is made in terms of an unknown functions of $F_1(r)$ and magnetic field variables in the form.

(5.1)
$$P_R = (1/r^2)(F_1 - k_{10})$$

(5.2)
$$P_T = (1/2r^3) \left[F_1' r^2 - \phi^2 f f' \right]$$

where k_{10} is a constant of integration

Vol. 28 No. 2 (2025): June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

Under this selection the differential equation (2.18) gets extremely simplified as

(5.3)
$$(v/2)(\rho + P_R) = 0$$

This gives rise to three possible sub cases as follows,

(i)
$$v' = 0, \rho + P_R \neq 0,$$

(ii)
$$v' \neq 0, \rho + P_R = 0,$$

(iii)
$$v' = 0, \rho + P_R = 0,$$

Now the attentior, is focused to solve the field equations (2.11) to (2.13) with the consideration of the hypothesis (5.1) and (5.2) and these three possible cases.

Subcase (i):

The solution under the case $v' = 0, \rho + P_R \neq 0$,

Integration of v' = 0 yields

(5.4)
$$v = constant = v_0.$$
 (say)

But for small values of r, the line element should reduce to Minkowaski line element. This implies that

$$v = 0$$
 at $r = 0$

Hence the equation (5.4) directs that $v_0 = 0$ so that the equation (5.4) gives

$$(5.5)$$
 $v = 0$

Now by utilizing equations (2.10), (5.1) and (5.5) the value of metric coefficient e^{λ} is deduced as

$$(5.6) \quad e^{\lambda} = 1 + KF_1 - Kk_{10} - \left(K\phi^2\psi^2 / 2r^2\right)$$

Consequently the line element (2.1) due to the values (5.5) and (5.6) takes the form

(5.7)
$$ds^{2} = -\left[1 + KF_{1} - Kk_{10} - \left(K\phi^{2}\psi^{2} / 2r^{2}\right)\right]^{-1}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) + dt^{2}$$

Vol. 28 No. 2 (2025): June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

This solution represents a class of static spherically symmetric models for the universe filled with the ferrofluid. These have the following properties.

(1) It is observed from the metric (5.7) that the value

(5.8)
$$r = \sqrt{\left(K\phi^2\psi^2 / 2\left(-KF_1 + Kk_{10} - 1\right)\right)}$$

forms a singularity apart from the usual singularity at r = 0. Further note that this singularity is not a coordinate singularity.

(2) For any choice of F_1 the expression for the matter density ρ is obtained by using equations (2.10) and (5.6) in the equation (2.13)

(5.9)
$$\rho = -(F'/r) - \left(F_1/r^2 + (K_{10}/r^2) - (\phi^2\psi^2/r^4) + (\psi\psi'/r^3)\right)$$

While the expression for radial pressure, tangential pressure and magnitude of magnetic field are respectively given vide (5.1), (5.2) and (2.9) as

(5.10)
$$P_R = (F_1 / r^2) - (k_{10} / r^2),$$

(5.11)
$$P_T = (F_1'/2r) - (\phi^2 \psi \psi'/2r^3),$$

(5.12)
$$h^2 = (\psi^4 / r^4)$$
.

(3) It is clear that, for the model (5.7), the flow is expansion free, non shearing, non-accelerating and irrotational. Hence the flow lines are rigid.

6. Discussion

The choice of the functional value

(6.1)
$$F_1 = k_{11}r^2 + k_{10} + (\phi^2 f^2 / 2r^2),$$

(where k_{11} is arbitrary constant)

Equates the values of radial and tangential pressures (isotropic state) and generates the class of solutions obtained by

(a) Shah [15] for magneto fluid system designed by Licherowicz [10].

Vol. 28 No. 2 (2025) : June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

(b) Aherkar and Asgekar [1] for magneto fluid system devised by Maugin [12].

For the selection

(6.2)
$$F_1 = k_{11}r^2 + k_{10}$$

and in the absence of magnetic field the metric form (5.7) give rise to well known Einstein homogeneous static model with isotropic pressure.

7. References

- 1. Aherkar, S.M. and Asgekar, G.G. (1984), J. Shivaji University, 22, P. 241.
- 2. Bayin, S. (1982), Phys. Rev. D, 26, P. 1262.
- 3. Berman, M.S. (1988), GRG, 20(8), P. 841.
- 4. Bower's R.L. and Liang E.P.T. (1974), Astrophys. J., 188, P. 657. cfr (45).
- 5. Coley, A.A. and Tupper, B.O.J., (1991), GRG, 23(10), P. 1113.
- 6. Cosenza, M., Herrera, L. Esculpt, M. and Witten, L. (1981), J. Math. Phys., 22(1), P. 118.
- 7. Cosenza, M. Herrera, L., Esculpt, M. and Witten, L. (1982) Phys. Rev. D., 25, P. 2527.
- 8. Eddington, A.S., 1960, the Mathematical Theory of Relativity, Cambridge University Press, Cambridge
- 8.(a) Herrera, L. et. al. (1984), J.M.P., 25(11), p. 3274.
- 9. Karmmer, D. Stephani, H. Herli, E. and Maccallum (1980), Exact Solutions of Einstein Field Equation, Cambridge University Press, Cambridge.
- Lichnerowicz, A. (1967), Relativistic Hydrodynamics and Magneto hydrodynamics,
 W.A., Benjamin, New York.
- 11. Maharaj, S.D. and Maartens, R. (1989), GRG, 21(9), P. 899.
- 12. Maugin, G.A. (1972), Ann. Inst. Henri, Poincare, 16(3), P. 133.
- 13. Ponce De Leon, J. (1987a), GRG, 19, P. 797.
- 14. Ponce De Leon, J. (1987b), J. Math. Phys., 28, P. 1114.
- 14.(a) Ray, M.K. and Banerji, S. (1982), Proc. 9th Ann. Cond. Indian Ass. For GRG, P. 193.
- 15. Shah, R.R. (1972), J. Shivaji University, 5(10), P. 27.

Vol. 28 No. 2 (2025): June

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal) https://mbsresearch.com/

ISSN: 1539-854X

- 16. Stewart, B.W. (1981), Docotral dissertation, University of Cincinnati, cfr (62).
- 17. Yodzis, P. Seifert, H.J. and Muller Zum Hangen, H. (1973), Commun Math. Phys., 24, P. 135, cfr. (62).

Vol. 28 No. 2 (2025) : June Page|91