
Page|76 

AFRICAN DIASPORA JOURNAL OF MATHEMATICS                    ISSN: 1539-854X 

UGC CARE GROUP I(Double-Blind Peer Reviewed Refereed Open Access International e-Journal )  https://mbsresearch.com/ 

Vol. 28 No. 2 (2025) : June   

Some Anisotropic Spherically Symmetric Static Solutions Filled with Ferro Fluid 

By : 

 

Dr. ARBIND KR. SINHA   and     PUJA KUMARI 

HOD Mathematics,         Research Scholar  

Cum Principal, G.J. College,        Deptt. of Mathematics 

Rambagh, Bihta (P.P.U)        Patliputra University, Patna 

 

ABSTRACT : 

  The present paper provides some static solutions of Einstein-Maxwell’s equations for 

anistropic ferrowfluid using spherically symmetric metric under different specific conditions. 

Various physical and geometric features have been found and discussed.  
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1. Introduction  

  A pretty number of researchers have found their interest in generating solutions of 

Einstein-Maxwell field equations which are very useful and relevant in general relativity [8, 9, 

13]. These solutions provide deep knowledge of space-time and furthermore these are not 

connected to a specified choice of parameters and basic conditions. The latest survey of isotropic 

solutions of Einstein’s field equations for spherical symmetry was given by Krammer et. al. [9]. 

Further Yodzis et. al. [17] presented a solution which provides naked singularities in the 

spherical gravitational collapse of anisotropic matter. Bowers and Liang [4] have investigated 

and discussed anisotropic spheres with useful impacts in astrophysics. A useful technique to 

obtain interior solutions of Einstein’s equations for anisotropic matter from known solutions of 

such matter was established by Cosenza et. al. [6]. Stewart [16] has presented a large class of 

anisotropic interior solutions for static conformally flat spherically symmetric metric with a 

feedom to choose the functional form of mass distribution. A comparision of properties between 

isotropc and anisotropic spheres have been evolved by Cosenza et. al. [7] and Bayin [2]. Punce 

de Leon [13, 14] has provided various solutions applying new methods. Berman [3] has found an 
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anisotropc cosmological solution considering Bianchi type – I space-time metric. Naharaj and 

Martens [11] have explored a class of interior solutions with homogeneous density source and a 

specified form of radial pressure Coley and Tupper [5] have prove that the anisotropc fluid space 

times using covariantly constant vector must satisfy many strong conditions. 

  In this paper we have presented some static solutions of Einstein-Maxwell’s field 

equations for anisotropic ferrowfluid system using spherically symmetric space-time under 

different specific conditions. Various physical and geometrical features have been ferend and 

discussed.  

2. The Field Equations  

  We take static spherically symmetric metric given by 

(2.1)   
2 2 2 2 2 2 2 2 2 2ds e dr r d r d r sin d e dt           

where  and  are functions of r alone 

The stress energy tensor for anisotropic ferrow fluid (AEF) is given by (Herrera et. al. 1984) 

(2.2)  ab i j ij

R TT ( p 2m) P m g         

   i j

R TP P 2m H H    

Where symbols have their usual meanings and Hi is the unit space like magnetic vector with 

(2.3) 
i i i

i i i1, H 0, H H 1,        

(2.4) 
i 2

i i i i iH h / h,h hH h h h      

and  

(2.5) 
22m h   

where  is magnetic permeability, vi is 4-velocity of fluid, h2 is the magnitude of the magnetic 

field vector Hi. 

  The magnetic field part in the charted fluid with variable magnetic permeability is subject 

to satisfy Maxwell’s equations given by (Ray and Banergy, 14(a)) 
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(2.6)  i i j ih H H ; j 0     
 

 

  The attention is confined to the commoving coordinate system for which flow vector vi 

and magnetic field vector Hi have expressions. 

(2.7) 
i i /2

4e
   , 

(2.8) 
i i /2

4H e  , 

  Thus under commoving system the Maxwell equations (2.6) are solved by using (2.3) and 

(2.4) to evaluate the magnitude of the magnetic field h2 and variable magnetic permeability  as 

(2.9) 
2 4 4h / r   

(2.9a)   
2 2/      

  where  is constant of integration and  is function of r. Therefore the equation (2.5) 

provides the value 

(2.10)   2 2 2 4m (1/ 2) h (1 / 2) / r     
 

 

  The assumption of static spherical symmetry under commoving coordinate system 

restricts the components of the stress-energy tensor (2.2). Accordingly we have  

  1

1 RT P m ,    

  2 3

2 r 3T P m T     

and  4

4T m    

  Thus the Einstein field equations for the anisotropic ferrofluid system 

ij ij ij

1
R Rg KT

2
   described through the energy momentum tensor (2.2) generates the 

following equations 

(2.11)   2 2

RK P m e ( / r) (1/ r ) 1/ r ,         
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(2.12)    2

rK(P m) e ( / 2) ( / 4) / 4 / 2r ,                  
 

 

(2.13) 
2 2K( m) e ( / r) (1/ r ) 1/ r ,          

  Here the prime denotes derivative with respect to r 

  The sum of equation (2.11) and (2.13) gives  

(2.14)    RK( P ) e ( / r) ( / r) e / r                

On subtracting the equation (2.12) from the equation (2.11) we have  

(2.15) 
R rK(P P ) 2Km e    

  
2 2 2/ 2) ( / 4) ( / 4) / 2r / 2r 1/ r 1/ r                  

On differentiating the equation (2.4) with respect to r and using the equation (2.10) one can get  

(2.16) 
2 3 2

RKP e ( / r) ( / r ) 2 / r ( / r) / r                  

   32 / r (2 / r) ( / ) ( 2Km)      

Further using the equation (2.15) we find  

(2.17) 
R R rKP (1/ 2)e ( ) / r K(P P )(2 / r) 2Km( / )                

Thus the equation (2.14) and (2.16) provide 

(2.18)  
2 4

R R R rP ( P )( / 2) (P P )(2 / r) ( / r ) 0             

This equation describes the factors affecting the rate of variation in radial pressure. 

3. Solution of the Field Equations  

Model – I 

  Here we start with a physical plausibility that the matter distribution consists of an 

ionized imperfect gas satisfying the equation of state RP  . This situation can be well 

described through the setting 

(3.1) 
2K e / r

   
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(3.2) 
2

RKP e / r , 

where  and  positive constants. The value of v is obtained by integration of equation (2.14) as  

(3.3) R 1K ( P )e rdr logk ,      

where k1 is a constant of integration. 

The equation (3.1) and (3.2) simplify equation (3.3) to 

(3.4)  k

1log k r e  , 

where k =  +   

  By making use of the values of m and PR from equation (2.10) and (3.2) in equation 

(2.15), we get  

(3.5)  2 2 2r e (3 / 2)kre (1/ 2)(k 4i 4)e              

  2 2 2 2

r2 2KP r 2K / r     

Now to solve the field equations, we have two cases  

Case I : 

  He we suppose that tangential pressure be expressed in the form  

(3.6) 
2

2KPT k e / r  

with k2 as constant.  

This shows that 
TP 0, as r   

By choosing y = e– the equation (3.5) reduces to 

(3.7) 
2 2 2 2 2

2r y (3 / 2)kry (1/ 2)(k 4i 4k 4)y 2K( / r ) 2           

By choosing new variable z as r = eZ leads the equation (3.7) to 

(3.8) 
2 2 2

2d y / dz (1/ 2)(3k 2)dy / dz (1/ 2)(k 4 4k 4)        

 
2 2 2zy 2K( )e 2     
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This equation provides the general solution in the form given by 

(3.9) 
P1z p2z 2z

3 4y Ae Be k k e     

where A and B are constants of integration and P1, P2, k3, k4 are constants given by 

(3.10) 
2

1 2P (1/ 4) 3k 2 k 20 12 36 32k          
 

 

(3.11) 
2

2 2P (1/ 4) 3k 2 k 20 12 36 32k         
 

  

(3.12) 
2

3 2k 4 / (k 4 4k 4)       

(3.13) 
2 2 2

4 2k 4K( ) / (k 10 6 4k 8)         

(3.14)  
p1 p2 2

3 4y e Ar Br k k / r      

The value of ev is is then obtained from the equation (3.4) as 

(3.15)  
v p1 C p2 C C (C 2)

1 3 4e k Ar Br k r k r         

Hence the space-time metric in this case reads as  

(3.16) 1 2
1

P P2 2 2

3 4ds Ar Br k k / r dr


         

  2 2 2 2r d sin d     1 2P C p C C (C 2) 2

1 3 4k Ar Br k r k r dt        

  This describes the static spherically symmetric model consistent with the ferrofluid 

system. 

Implications of the solution (3.16) 

1. The physical requirements  

(3.17) R T0,R 0,P 0.    

Imply the conditions on ,  and k2 as  

(3.18) 20, 0,k 0     
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2. the values of kinematical parameters associated with time like unit flow vector vi 

corresponding to (3.16) are given by 

(3.19)  Expansion : 
2

1v 0  

(3.20)  Shear : 2 = 0, 

(3.21)  Rotation : 2 = 0, 

(3.22) Acceleration  2 2v / 4 e      

where v is given by the equation (3.15) and e– by the equation (3.14).  

3. the choice  = k2 implies that the radial and tangential pressures are equal. The restriction 

 = k2 = 0 leads the solution (3.16) to a dust filled universe. The selection  = 3/3 = 3k2 procures 

the radiating model. When one identifies  =  = k2, then it reduces to a super dust model.  

4. the metric (3.16) with  = – = k2 = 0 and k1 = 1 assumes the solution in the form  

(3.23)  
1

2 2 2 2 2 2ds 1 Ar B / r K / 2r dr


           

  2 2 2 2r d sin d     2 2 2 2 2[1 Ar B / r K / 2r ]dt      

This describes the static exterior field of the anisotropic ferrofluid distribution.  

5. For A = 0 the solution (3.23) reduces to Reissner-Nordstrom metric describing the 

gravitational field in the exterior region of a infinitely conducting static sphere which has the 

metric form  

(3.24)   
1

2 2 2 2 2 2 2 2 2ds 1 (B / r) K / 2r dr r d sin d


               

 
2 2 2 21 (B / r) K / 2r dt       

6. A metric (3.23) with A 0     generates the well known Schwarchild’s exterior 

solution 

(3.25)     
12 2 2 2 2 2ds 1 (B / r) dr r d sin d


            21 (B / r) dt   
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7. A metric (3.23) reduces to deSitter’s model for a static homogeneous universe for the 

substitution B 0     given by 

(3.26)   
1

2 2 2 2 2 2 2ds 1 Ar dr r d sin d


          
2 21 Ar dt    

8. The selection A = B = 0 reduces to solution (3.23) to the line element characterizing 

gravitational field of an electron (Eddington, 8). 

(3.27)   
1

2 2 2 2 2 2 2 2 2ds 1 K f / 2r dr r d sin d


             

 
2 2 2 21 K f / 2r dt     

9. The treatment B = 0 in the metric (3.23) generates the line element as obtained by 

Aherkar and Asgekar [1] representing a static spherically symmetric space time model for the 

universe filled with the magnetofluid. 

(3.28) 
1

2 2 2 2 2 2 2ds 1 Ar k / 2r dr r


         

  2 2 2 2 2 2 2 2d sin d 1 Ar k / 2r dt             

Case 2 : 

  Here we suppose that the tangential pressure has the form as  

(3.29) 5C 2

T 1 1 1 6 1P r rF r(logr) (F rF ) k rF logr          

where F1 is any arbitrary function of r and the constants k5 and k6 are  

(3.30)  
2

5k (3 / 4)(k 2) (1/ 4) 4 36 5k 12,         

(3.31)  
2

6k (1/ 2) 4 36 5k 12      

Thus the equation (3.5) reduces to  

(3.32)  
2 2 2 2r y (3 / 2)kry (1/ 2)(k 4 4)y 2K( )          

 5C 2 2

r 3 3 1 6 12 K rF r(logr) (F rF ) k rF logr
            
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where y = e–  

on putting r = e2 this gives  

(3.33) 
2 2d y / dz (1/ 2)(3k 2)dy / dz (1/ 2)    

 5(C 2)2 2 2 2z

6(k 4 4)y 2K( )e 2 2Ke [ k ]
              

where (z) is the value of E1(r) obtained by putting r = ez. 

This equation (3.33) admits the general solution in the form 

(3.34)  54z [C 2)zPP z 2z

7 8y e 3 e k k e 2Ke ,
          

where  and   are constants with  

(3.35)  
2

3P (1/ 4) (3k 2) k 20 12 36 ,         
 

 

(3.36)  
2

4P (1/ 4) (3k 2) k 20 12 36 ,         
 

 

(3.37)  
2

7k 4 / (k 4 4)        

and  

(3.38)  
2 2 2

8k 4K( ) / (k 10 6 8)        

On putting e2 = r in the equation (3.34) gives  

(3.39)  3 54p (C 2)p 2

7 8 1y e r r k k / r 2Kr F.
        

The value of e is then obtained from the equation (3.4) as 

(3.40)  3 54P C (C C 2)p Cv C C 2

1 7 8 1e k r r K r K r 2Kr F
             

Hence the space-time metric in this case is given by 

(3.41)  3 54
1

P (C 2)P2 2

7 8 1ds r r k k / r 2Kr F


           

    2 2 2 2 2dr r d sin d       
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  3 54P C (C C 2)P C C (C 2) 2

1 7 8 1k r r k r k r 2Kr F dt
            

This presents a metric structure explaining the geometrical format of the anisotropic ferrofluid 

system under some special choice of the function F1. 

Remarks : 

  For the model (3.41) the flow is essentially accelerating with the value 

(3.42)   *2 2v / 4 e    

Where v is given by (3.40) e– by the equation (3.39). 

4. Case 2:  (Model II) 

  By taking the first integral of the differential equation (2.13) the value of e– is written as 

(4.1)  2 2 2 2e 1 (1 / r) Kr K / 2r dr       
   

with a view to simplify this the matter density is expressed in learns of arbitrary function t(r) 

through a reasonable format  

(4.2) 
2t / r   

and  

(4.3) 
2 2r     

This selection with the equation (4.1) provides  

(4.4) 
2e T / 2r   

where  

(4.5)  
2 2T 2Krt 2r K r       

Further by utilizing this value of e– and the equation (2.10) in the differential equation (2.11) the 

expression for  is deduced as  

(4.6) 
2 4 2 2

R(1/ Tr) 2r Kkr P K (1/ r)           
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With a objective to find the integral of differential equation (4.5) the value of radial pressure PR 

is selected in a specific form, say 

(4.7) 
3

RP T / 2R  

where is any arbitrary function of r. Thus by introducing this value of PR in the equation (4.5) 

and after integrating both sides with respect to r, the parameter v is evaluated as  

(4.8) 
2 2 2(1/ Tr) 2r K dr K logr          

where the constant of integration is taken as zero. Under all the imposed plausible restrictions a 

class of space time models in terms of unknown functions T(r) and (r) is given by 

(4.9)    2 2 2 2 2 2ds 2r / T dr r d sin d         

   k 2 2 2 21/ r e exp (1/ Tr)(2r K )dr dt    
   

Also the value of tangential pressure PT is derived in terms of these functions, by using the 

equation (4.2), (4.6) and (4.7) in the equation (4.13), in the form  

(4.10)     2 2 2

rP T / 4r KT / 8r       

          2 3 2 3T / 4r Kt / 4r 3T / 8r 1 / 4r K / 8r          
 

 

        2 2 2 2 2 3t 1 / 2T 1/ 4r K f / 4r / 2r 0         
 

. 

By evaluating all the values of kinematical parameters with respect to the metric (4.8) it is 

noticed that the flow is essentially accelerating with the magnitude given by 

  
2

*2 2 2 2 2v T / 8r (K / Tr)(2rt ) K            

or 

  
2

*2 2 2 2 2v T / 8r (K / Tr)(2rt r ) K             

Some interesting particular cases of (4.8) involving different choices of t(r) are discussed below : 
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Case A : The choice  

(4.11)  
2t (t / K) ( / 2)    , 

Leads the radial pressure PR to vanish. 

Moreover for the choice the metric (4.8) becomes singular hence it is physically unacceptable. 

Remarks : 

The value  = constant also yields that the radial pressure is zero. 

Case B : If the value of t is chosen in terms of unknown function (r) as 

 2 2t (r / K) ( / 2) ( / ) ( / 2) (1/ K) ,            

or 

(4.12)   2 2 2 2t (r / K) ( / 2) ( / ) ( / 2r ) (1/ K) ,           

Then the line element (4.8) gets reduced to 

(4.13)  
1

2 2 2ds ( / ) (K / 2r) (1/ r) dr


           

  2 2 2 2 K 2r d sin d ( / r)e dt       

Also the value of matter density  is given by 

(4.14)       2 2 2 2 2/ 2Kr K 2 K / 2Kr . ,                  

5. Case 3 : (Model III) 

  In the phase, with a view to develop a new class of models pertaining to the field 

equations (2.11) to (2.13) a special choice of radial and tangential pressures PR and PT is is made 

in terms of an unknown functions of F1(r) and magnetic field variables in the form. 

(5.1) 
2

R 1 10P (1/ r )(F k )   

(5.2)  
3 2 2

T 1P (1/ 2r ) Fr ff       

where k10 is a constant of integration  
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Under this selection the differential equation (2.18) gets extremely simplified as  

(5.3) 
R(v / 2)( P ) 0   

This gives rise to three possible sub cases as follows, 

(i) 
Rv 0, P 0,      

(ii) 
Rv 0, P 0,      

(iii) 
Rv 0, P 0,      

Now the attentior, is focused to solve the field equations (2.11) to (2.13) with the consideration 

of the hypothesis (5.1) and (5.2) and these three possible cases. 

Subcase (i) : 

The solution under the case 
Rv 0, P 0,      

Integration of v 0  yields  

(5.4) v = constant = v0. (say) 

But for small values of r, the line element should reduce to Minkowaski line element. This 

implies that  

v = 0 at r = 0  

Hence the equation (5.4) directs that v0 = 0 so that the equation (5.4) gives 

(5.5)  v = 0 

Now by utilizing equations (2.10), (5.1) and (5.5) the value of metric coefficient e is deduced as  

(5.6)  2 2 2

1 10e 1 KF Kk K / 2r        

Consequently the line element (2.1) due to the values (5.5) and (5.6) takes the form  

(5.7)   
1

2 2 2 2 2

1 10ds 1 KF Kk K / 2r dr


        
 

 

  2 2 2 2 2r d sin d dt      
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This solution represents a class of static spherically symmetric models for the universe filled 

with the ferrofluid. These have the following properties. 

(1) It is observed from the metric (5.7) that the value  

(5.8)   2 2

1 10r K / 2 KF Kk 1       

forms a singularity apart from the usual singularity at r = 0. Further note that this singularity is 

not a coordinate singularity. 

(2) For any choice of F1 the expression for the matter density   is obtained by using 

equations (2.10) and (5.6) in the equation (2.13) 

(5.9)   2 2 2 2 4 3

1 10(F / r) F / r (K / r ) ( / r ) / r            

While the expression for radial pressure, tangential pressure and magnitude of magnetic field are 

respectively given vide (5.1), (5.2) and (2.9) as  

(5.10)   2 2

R 1 10P (F / r ) k / r ,   

(5.11)     2 3

T 1P F / 2r / 2r ,      

(5.12)  
2 4 4h ( / r ).   

(3) It is clear that, for the model (5.7), the flow is expansion free, non shearing, non-

accelerating and irrotational. Hence the flow lines are rigid.  

6. Discussion  

  The choice of the functional value  

(6.1)  2 2 2 2

1 11 10F k r k f / 2r ,     

(where k11 is arbitrary constant ) 

Equates the values of radial and tangential pressures (isotropic state) and generates the class of 

solutions obtained by 

(a)Shah [15] for magneto fluid system designed by Licherowicz [10]. 
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(b) Aherkar and Asgekar [1] for magneto fluid system devised by Maugin [12].   

For the selection  

(6.2)  
2

1 11 10F k r k   

and in the absence of magnetic field the metric form (5.7) give rise to well known Einstein 

homogeneous static model with isotropic pressure. 
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