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Abstract 

In statistical inference, the estimation of error variance plays a crucial role in regression analysis 

and hypothesis testing. Using the available extraneous information, some improved estimators of 

error variance in the linear regression model may be constructed which combine both the sample 

and the non-sample information. A pre-test estimator of error variance is considered when prior 

information about regression parameters is available, influencing the estimation process. The 

modest aim of this article is to study and analyze distributional properties of a pre-test estimator 

of error variance in a linear regression model with numerical computation. 

Keywords: Ordinary Least Squares Estimator (OLS), Restricted Least Squares Estimator (RLS), 

Pre-Test Estimator.  
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Introduction 

Statistical inference in linear regression model heavily depends upon, among other 

things, the properties of error variance. For instance, while carrying out statistical tests of 

significance or constructing confidence intervals for the parameters the knowledge of error 

variance is inevident. In situation where error variance is not known, it has to be estimated from 

the available sample information and is constructed using residual sum of squares. Generally, the 

error variance are estimated using least squares estimates of the coefficients in the model. 

However, following Stein’s (1964) elegant proof of the inadmissibility of the usual least square 

estimator of variance, extensive work has been reported on improved estimation of error variance. In a 

very interesting article Matta and Casella (1990) reviewed and examined the developments in variance 

estimation under decision theoretic set up. Ohtani (1987, 2001) working with the iterative Stein rule 

estimator of error variance demonstrated that under squared error loss it is dominated by the least squares 

based variance estimator when number of regressors is atleast five. Dube et. Al (2015) studied the 

performance properties of disturbance variance under restrictions using LINEX loss function. Clarke et. al 

(1987a, b) using coverage probabilities, worked on Pre-test estimators of error variance. The sampling 

performance and exact probability distribution of pre-test estimators under inequality estimators have 

been explored by Wan (1997).  In the field of Pre-test estimator in two variable model, Khan and Saleh 

(1997), Khan et al. (2002) and Khan et. al (2005) studied the performance properties of the pre-test 

estimator of the intercept parameter of simple linear regression model. Their study shows that 

under certain conditions pre-test estimator dominates the least squares estimator. Kumar (2016) 

derived the exact distribution of Pre-test estimator of regression coefficient under orthonormal 

regression model. 
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 The aim of this paper is to find the distribution of Pre-test estimator of disturbance 

variance in linear regression model. The organization of this paper is as follows: Section 2 

describes the model and estimators, testing of hypothesis and Pre-test estimator of disturbance 

variance. In Section 3 the distribution function of the Pre-test estimator of error variance has 

been determined then using distribution function, the density function of Pre-test estimator of 

error variance has been obtained. Numerical computation and comparison are made in section 4. 

Lastly, a brief outline of proof of the theorem is provided in Appendix.   

2 The Model and The Estimators 

 Consider the multiple linear regression model 

𝑦 = 𝑋𝛽 +  𝜀        (2.1) 

where  y  is an 𝑛 × 1 vector of observations on the response variable, X  is an 𝑛 × 𝑝 full column 

rank nonstochastic matrix of  n  observations on  p  explanatory variables, 𝛽 is a 𝑝 × 1 vector of 

unknown parameters associated with the p regressors and   𝜀  is an   𝑛 × 1   vector disturbances. 

The elements of the disturbances vector 𝜀  are assumed to be independently and identically 

distributed each following normal distribution with mean zero and variance 𝜎2, so that 𝐸(𝜀) = 0  

and    𝐸(𝜀𝜀′) =  𝜎2𝐼𝑛 where  𝜎2  is finite but unknown. Suppose some prior information in the 

form of restrictions on 𝛽 are available and is given by 

𝑟 −  𝑅𝛽 =  𝛿        (2.2) 

where R is 𝑞 × 𝑝   (𝑞 ≤ 𝑝) matrix of known elements with rank q,   q  being the number of 

restrictions imposed on the coefficients, 𝑟 is a 𝑞 × 1  vector of known elements and   𝛿  is 𝑞 × 1   

vector representing the errors in the restrictions. The least squares estimator without and with 

restrictions are given by  

𝑏 =  (𝑋′𝑋)−1𝑋′𝑦                     and     (2.3) 

𝑏𝑅 =  (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑟 − 𝑅𝑏)    (2.4) 

As 𝜎2 is generally unknown, it has to be estimated from the available sample information. In 

view of this, the following estimators of error variance, one entirely based on the sample 

information and the other utilizing prior information may be constructed. Thus using the ordinary 

least squares estimator (2.3) and restricted least squares estimator (2.4) the following estimators 

of error variance are constructed  

𝑠2 =  
1

𝑚
𝑒′𝑒 ;           𝑚 = 𝑛 − 𝑝 + 𝜃     (2.5) 

𝑠𝑅
2 =

1

𝑚′
 𝑒𝑅 

′ 𝑒𝑅  ;         𝑚′ =  𝑛 − 𝑝 + 𝑞 + 𝜃     (2.6) 

Here  𝑒 and 𝑒𝑅 are the residual vector obtained using ordinary least squares and restricted least 

squares estimator respectively, and m and  m’  are the arbitrary scalars characterizing the 
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estimators. It may be noted that the residual vector 𝑒𝑅  using (2.4) can be written as  𝑒𝑅 = 𝑦 −

𝑋 𝑏𝑅 which further using (2.1) and (2.4 ) reduces to 

𝑒𝑅 = �̅�𝑋 𝜀 − 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝛿           where  

�̅�𝑋 = (𝐼 − 𝑋 Ω−1𝑋′);   Ω−1 =  (𝑋′𝑋)−1 −  (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1  

It is easy to verify that �̅�𝑋  is an idempotent matrix with rank 𝑣 + 𝑞.    

In order to test the compatibility of the sample information (2.1) and the non-sample information 

(2.2), the following test of hypothesis may be performed. 

 𝐻0 ∶  𝛿 = 0        (2.7) 

against 

𝐻1 ∶  𝛿 ≠  0                      where 𝛿 = 𝑅𝛽 − 𝑟.    (2.8) 

This hypothesis is tested using the Wald test statistics, given by 

𝑢 =  

(𝑟−𝑅𝑏)′[𝑅(𝑋′𝑋)
−1

𝑅′]
−1

(𝑟−𝑅𝑏)
𝑞

⁄

𝑒′𝑒
𝑣⁄

     (2.9) 

The test statistic u has a central F distribution with q  and  v   degrees of freedom and under (2.7) 

, the test statistics u  has a non-central F distribution  with q  and  v   degrees of freedom with 

non-centrality parameter 𝜆. As 𝜆 is typically unknown, it is usual to test under the null hypothesis 

𝐻0, and so reject the hypothesis if 𝑢 >  𝐹(𝑞,𝑣)
𝛼 = 𝑐, where c is the critical value and is determined 

for a given significance level of the test  

∫ 𝑑𝐹(𝑢) = 𝛼
∞

𝑐

 

In view of this, a Pre-test estimator of error variance may be defined which is given by  

𝑠𝑃𝑇
2 =  𝐼[0,𝑐)(𝑢) 𝑠𝑅

2 + 𝐼(𝑐,∞](𝑢)𝑠2     (2.10) 

where   c is the critical value of the Pre-test and 𝐼(. ) is an indicator function which is one if u  

falls in the given interval and zero otherwise. 

3 Distribution of Pre-Test Estimator of Error Variance  

In order to determine the distribution function of pre-test estimator   𝑠𝑃𝑇
2 , the statistics 𝑢 in (2.9) 

can be written as  

𝑢 =
𝑢1

𝑞⁄
𝑢2

𝑣⁄
  ;                 𝑣 = 𝑛 − 𝑝               (3.1) 
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where    𝑢1 =
(𝑟−𝑅𝑏)′[𝑅(𝑋′𝑋)

−1
𝑅′]

−1
(𝑟−𝑅𝑏)

𝜎2
                   (3.2)  

and   𝑢2 =
𝑒′𝑒

𝜎2
         (3.3) 

It is clear that under 𝐻0,  𝑢1 follows a central chi-square distribution with q degrees of freedom 

while under 𝐻1 it follows a non-central chi-square distribution with non-centrality 

parameter     
𝜆

2
 .    It is also well recognized that 𝑢2 is distributed independently of 𝑢1 and follows 

a central chi-square distribution with v degrees of freedom[see Searle (1971)]. First write 𝑠𝑅
2 and 

𝑠2 in the manner following Ohtani (2002): 

𝑠𝑅
2 =

1

𝑚′
{𝑒′𝑒 +  (𝑟 − 𝑅𝑏)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑟 − 𝑅𝑏)}  =

𝜎2

𝑚′
(𝑢1 +  𝑢2)  

while                                       𝑠2 =
𝜎2

𝑚
 𝑢2  

Thus, using these, the Pre-test estimator (2.10) becomes 

𝑠𝑃𝑇
2 =  𝐼 [

𝑢1

𝑢2
< 𝑐∗]

𝜎2

𝑚′
(𝑢1 +  𝑢2)  +  𝐼 [

𝑢1

𝑢2
> 𝑐∗]

𝜎2

𝑚
 𝑢2    (3.4) 

where  𝑐∗ =  
𝑞𝑐

𝑣
,     𝑚 = 𝑣 + 𝜃     and        𝑚′ = 𝑣 + 𝑞 + 𝜃  

To determine probability density function of Pre-test estimator   𝑠𝑃𝑇
2  , first determine the 

distribution function. The following theorem gives the distribution function of the Pre-test 

estimator (2.10) 

Theorem 1: When errors in the model (2.1) are normally distributed, the distribution 

function of the Pre-test estimator    𝒔𝑷𝑻
𝟐    is given by 

𝐹(𝜏) =   ∑ 𝑤𝑖(𝜆) 𝐺 (
𝑣+𝑞

2
+ 𝑖,   

𝑚′𝜏

2 𝜎2
) I 𝑞𝑐

𝑣+𝑞𝑐
(

𝑞

2
+ 𝑖,

𝑣

2
) ∞

𝑖=0   

+ ∑ 𝑤𝑖(𝜆)∞
𝑖=0

1

𝐵(
𝑞

2
+𝑖,

𝑣

2
)
 ∫ 𝑔

𝑞

2
+𝑖−1(1 − 𝑔)

𝑣

2
−1 

1
𝑞𝑐

𝑣+𝑞𝑐

 𝐺 (
𝑣+𝑞

2
+ 𝑖,   

𝑚 𝜏

2 𝜎2(1−𝑔)
) 𝑑𝑔   (3.5)                   

where  𝑤𝑖(𝜆) =  
𝑒−𝜆𝜆𝑖

𝑖!
, 𝐺(𝑎, 𝑥)  is the incomplete gamma function and Ι𝑥 (𝑎, 𝑏) is the 

incomplete Beta function. 

Proof: See Appendix. 

From the above theorem, the density function of the Pre-test estimator may be obtained by 

differentiating  𝐹(𝜏) with respect to 𝜏. For this purpose the following formula is used owing to 

the involvement of 𝜏 in the incomplete gamma function: 
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𝜕

𝜕𝑥
𝐺(𝑎, 𝑥) =

1

Γ𝑎
𝑥𝑎−1 𝑒−𝑥   [see; Abramowitz and Stegun (1972)]. 

Hence, the probability density function of the Pre-test estimator    𝑠𝑃𝑇
2     is given by 

 𝑓(𝜏) = ∑ 𝑤𝑖(𝜆) (
𝑚′

2 𝜎2
)

𝑣+𝑞
2

+𝑖
1

Γ (
𝑣 + 𝑞

2 + 𝑖)
. I 𝑞𝑐

𝑣+𝑞𝑐
(

𝑞

2
+ 𝑖,

𝑣

2
)   

∞

𝑖=0

 

                     × 𝜏
𝑣+𝑞

2
+𝑖−1𝑒

−(
𝑚′

2 𝜎2)𝜏
+ ∑ 𝑤𝑖(𝜆)∞

𝑖=0
1

Γ(
𝑞
2

+𝑖)Γ(
𝑣
2

)
 (

𝑚

2 𝜎2)

𝑣+𝑞
2

+𝑖
𝜏

𝑣+𝑞
2

+𝑖−1  

                         × ∫
𝑔

𝑞
2

+𝑖−1

(1−𝑔)
𝑞
2

+𝑖+1
 

1
𝑞𝑐

𝑣+𝑞𝑐

  𝑒
−(

𝑚

2 𝜎2(1−𝑔)
)𝜏

𝑑𝑔      (3.6) 

The equation (3.6) is quite intricate and no clear conclusion about the shape of the distribution 

can be made. Hence, the probability density function of the statistic 𝑠𝑃𝑇
2  has been computed 

empirically using MATLAB. For this, firstly the variable  𝑔 is transformed using    𝑔 =
ℎ

1+ℎ
 to a 

new variable and again making change of variable (
𝑚 𝜏

2 𝜎2) ℎ = ℎ1  and using the Incomplete 

Gamma function reducing (3.6) to 

𝑓(𝜏) = ∑ 𝑤𝑖(𝜆) (
𝑚′

2 𝜎2)

𝑣+𝑞

2
+𝑖

1

Γ(
𝑣+𝑞

2
+𝑖)

. I 𝑞𝑐

𝑣+𝑞𝑐
(

𝑞

2
+ 𝑖,

𝑣

2
) ×  𝜏

𝑣+𝑞

2
+𝑖−1𝑒

−(
𝑚′

2 𝜎2)𝜏
 ∞

𝑖=0    

  

  + ∑ 𝑤𝑖(𝜆)∞
𝑖=0

1

Γ(
𝑣

2
)
 (

𝑚

2 𝜎2)

𝑣

2
 [1 − 𝐺 (

𝑞

2
+ 𝑖,   

𝑚′𝜏

2 𝜎2 .
𝑞𝑐

𝑣
)] 𝜏

𝑣

2
−1𝑒

−(
𝑚

2 𝜎2)𝜏
   (3.7) 

4. Numerical Computation and comparison 

 Now it is feasible to compute the equation (3.7) easily and using it for determine the 

shape of the probability density function. Owing to intricacy of the expression (3.7), it is 

computed for some specific values of the parameters. For this purpose few selected values of 𝑠𝑃𝑇
2  

(or τ) and λ for fixed degrees of freedom and the critical value c. The values of number of 

restrictions are also varied and taken to be 𝑞 = 1, 2 𝑎𝑛𝑑 5. These values are tabulated in Table 1. 

It may be noted from the Table 1 corresponding to the values λ=0, provides the probability 

distribution of 𝑠𝑅
2. Clearly, as moving down in the Table, i.e., increase the values of restrictions 

or prior information the probability of 𝑠𝑃𝑇 
2 moving away from the value decreases indicating that 

the availability of prior information enhances the chances of the value to be around true 

parametric value. However as moving horizontally in the Table, i.e., increase the value of the  

non-centrality parameter (increase the uncertainty), the probabilities decrease indicating that the 

chances of 𝑠𝑃𝑇
2  to be closer to the true value of the parameter decrease. This seems justified in the 

sense that incorporation of a correct prior information is always beneficial.  
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Table 1 Density function of Pre-test estimator for selected values of  𝒒, 𝝀 and fixed 𝒗 = 𝟏𝟎  

v=10 
q

=
1
 

τ λ=0 λ=0.01 λ=0.05 λ=0.1 λ=0.25 λ=0.5 λ=1 λ=5 λ=10 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 0.0005 0.0005 0.0005 0.0005 0.0005 0.0004 0.0003 0.0001 0.0000 

0.5 0.1548 0.1542 0.1518 0.1488 0.1404 0.1273 0.1048 0.0227 0.0036 

1.0 0.2548 0.2539 0.2502 0.2456 0.2324 0.2120 0.1765 0.0416 0.0072 

1.5 0.0956 0.0952 0.0939 0.0923 0.0877 0.0805 0.0678 0.0175 0.0033 

2.0 0.0193 0.0193 0.0190 0.0187 0.0179 0.0165 0.0141 0.0040 0.0008 

2.5 0.0018 0.0018 0.0018 0.0018 0.0017 0.0016 0.0014 0.0004 0.0001 

3.0 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0001 0.0000 

3.5 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

q
=

2
 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 0.0082 0.0081 0.0080 0.0079 0.0074 0.0068 0.0056 0.0013 0.0002 

0.5 0.2263 0.2255 0.2224 0.2186 0.2075 0.1902 0.1599 0.0404 0.0074 

1.0 0.2954 0.2945 0.2908 0.2863 0.2730 0.2523 0.2154 0.0608 0.0125 

1.5 0.0876 0.0873 0.0864 0.0853 0.0820 0.0768 0.0672 0.0226 0.0055 

2.0 0.0234 0.0234 0.0232 0.0229 0.0222 0.0209 0.0187 0.0070 0.0019 

2.5 0.0022 0.0021 0.0021 0.0021 0.0021 0.0020 0.0018 0.0008 0.0003 

3.0 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0002 0.0001 

3.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

q
=

5
 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 0.0040 0.0039 0.0039 0.0038 0.0036 0.0033 0.0028 0.0007 0.0001 

0.5 0.1971 0.1965 0.1943 0.1915 0.1833 0.1704 0.1473 0.0455 0.0103 

1.0 0.3340 0.3332 0.3301 0.3262 0.3149 0.2968 0.2635 0.0983 0.0269 

1.5 0.1089 0.1088 0.1082 0.1074 0.1050 0.1011 0.0936 0.0465 0.0168 

2.0 0.0284 0.0284 0.0283 0.0281 0.0277 0.0270 0.0257 0.0152 0.0065 

2.5 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0023 0.0017 0.0009 

3.0 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0002 

3.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

In order to get a clearer picture these values are plotted firstly for a given λ and then the values of 

λ are varied for a fixed value of q. 
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Figure 1(A) Probability Distribution of the Pre-test estimator of Error Variance 

for 𝝈𝟐 = 𝟏, 𝒗 = 𝟏𝟎, 𝐚𝐧𝐝 𝐟𝐨𝐫 𝐟𝐢𝐱𝐞𝐝 𝝀 

 

Figure 1(B) Probability Distribution of the Pre-test estimator of Error Variance for    𝛔𝟐 =

𝟏, 𝒗 = 𝟏𝟎, 𝒒 = 𝟏 
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It is clear from the Figure 1(A), that the distribution is unimodal and skewed and as the number 

of restrictions or prior information increase the probability distribution shifts to the left with 

modal value also shifting toward the assumed value 𝜎2 = 1. Next, the distribution of 𝑠𝑃𝑇
2   has 

been plotted for varying values of λ (see Figure 1(B) ). It is interesting to observe that from this 

figure that when the value of non-centrality parameter increases, the kurtosis of the distribution 

increases while there is not much affecting the skewness of the distribution i.e. it changes from 

being Leptokurtic to Platykurtic. In fact, it is observed that as the value of λ is very large, the 

distribution become flatter, i.e., the ability of pre-test estimator to differentiate between 

alternative values of  𝜎2 decline. The Figures 1 (B1) and 1(B2) indicate that for very small values 
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of λ (0 < λ< 0.1) the probability density function are almost coincident while a significant 

difference is obtained when the values of λ are large.     

Figure 1 (B1)  Probability Distribution of the Pre-test estimator of Error Variance  for σ2=

𝟏, 𝒗 = 𝟏𝟎, 𝒒 = 𝟏 
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Figure 1 (B2)  Probability Distribution of the Pre-test estimator of Error Variance for σ2=

𝟏, 𝒗 = 𝟏𝟎, 𝒒 = 𝟏 
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Next, the effect of the variation in degrees of freedom is carried out. In the Table 2, the 

probability distribution of 𝑠𝑃𝑇
2  has been enumerated for various values of  v. The Figure 2 is 

devoted to portray the behavior of the distribution of 𝑠𝑃𝑇
2  for various values of  v.  

An interesting result may be deduced from the Table 2  and also from the Figure 2 that as the 

degrees of freedom increase, the distribution becomes more peaked and the probability of 𝑠𝑃𝑇
2  to 

hover around the specified value of the parameter increase, indicating that larger the 

observations, more are the chances to get towards the true value of the parameter. 

Table 2  Probability Distribution of the Pre-test estimator of Error Variance for   selected 

values of v and fixed 𝒒, 𝝀 

τ v=10 v=20 v=30 v=50 v=100 

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 

0.1 0.00034 0.00000 0.00000 0.00000 0.00000 

0.5 0.10483 0.05932 0.02816 0.00535 0.00006 

1.0 0.17648 0.26232 0.32703 0.42843 0.61276 

1.5 0.06782 0.06284 0.04883 0.02486 0.00335 

2.0 0.01408 0.00451 0.00121 0.00007 0.00000 

2.2 0.00677 0.00128 0.00020 0.00000 0.00000 

2.4 0.00311 0.00034 0.00003 0.00000 0.00000 

2.6 0.00138 0.00008 0.00000 0.00000 0.00000 

2.8 0.00059 0.00002 0.00000 0.00000 0.00000 

3.0 0.00025 0.00000 0.00000 0.00000 0.00000 

   

Figure 2 Probability Distribution of the Pre-test estimator of Error Variance for     𝝈𝟐 = 𝟏,

𝒒 = 𝟏 𝐚𝐧𝐝 𝐟𝐨𝐫 𝐟𝐢𝐱𝐞𝐝 𝝀   
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Appendix  

Proof of Theorem 1: 

The distribution function of the pre-test estimator is given by 

 𝐹(𝜏) = 𝑃[𝑠𝑃𝑇
2 ≤ 𝜏] = 𝑃 [

𝜎2

𝑚′
(𝑢1 + 𝑢2) ≤

𝜏
𝑢1
𝑢2

≤ 𝑐∗] 𝑃 [
𝑢1

𝑢2
≤ 𝑐∗]  

 +𝑃 [
𝜎2

𝑚
(𝑢2) ≤ 𝜏/

𝑢1

𝑢2
> 𝑐∗] 𝑃 [

𝑢1

𝑢2
> 𝑐∗]    

  (A.1) 

since       𝑢1~𝜒(𝑞,   𝜆)
 2    𝑎𝑛𝑑    𝑢2~ 𝜒𝑣

 2, so their density functions are given by 

𝑓(𝑢1) = ∑ 𝑤𝑖(𝜆) ∞
𝑖=0

𝑢1

𝑞
2

+𝑖−1

2
𝑞
2

+𝑖
  Γ(

𝑞

2
+𝑖)

𝑒
−𝑢1

2   and   𝑓(𝑢2) =
𝑢2

𝑣
2

−1

2
v
2  Γ(

𝑣

2
)

𝑒
−𝑢2

2     

Using these above density functions, equation (A.1) may be written as 

  𝐹(𝜏) = ∬ 𝑓(𝑢1). 𝑓(𝑢2)𝑑𝑢1 𝑑𝑢2 + ∬ 𝑓(𝑢1). 𝑓(𝑢2)𝑑𝑢1 𝑑𝑢2𝑅2𝑅1
  (A.2) 

where 𝑅1 and   𝑅2   are  the regions given by 

   {(𝑢1, 𝑢2): 𝑢1 + 𝑢2 ≤  
𝑚′𝜏

𝜎2
,

𝑢1

𝑢2
≤ 𝑐∗}  and   {(𝑢1, 𝑢2): 𝑢2 ≤  

𝑚 𝜏

𝜎2
,

𝑢1

𝑢2
> 𝑐∗}  respectively. 

Now let us solve the first term of (A.2) i.e  

∬ 𝑓(𝑢1). 𝑓(𝑢2)𝑑𝑢1 𝑑𝑢2 =
𝑅1

∑ 𝑤𝑖(𝜆) ∞
𝑖=0

1

2
𝑣+𝑞

2
+𝑖

  Γ(
𝑞

2
+𝑖) Γ(

𝑣

2
)

∬ 𝑢1

𝑞

2
+𝑖−1

𝑢2

𝑣

2
−1

𝑅1
𝑒−(

𝑢1+𝑢2
2

)𝑑𝑢1 𝑑𝑢2  
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To solve it, making the change of variables 𝑢1 + 𝑢2 = 𝑡1 and 
𝑢1

𝑢2
= 𝑡2 so the value of Jacobean is 

given by | 𝐽 | =
𝑡1

(1+𝑡2)2
 , therefore it reduced to 

   ∬ 𝑓(𝑢1). 𝑓(𝑢2)𝑑𝑢1 𝑑𝑢2 =
𝑅1

∑ 𝑤𝑖(𝜆) ∞
𝑖=0

1

2
𝑣+𝑞

2
+𝑖 

 Γ(
𝑞

2
+𝑖)Γ(

𝑣

2
)
 

× ∫ 𝑡1

𝑣+𝑞

2
+𝑖−1 𝑒

−𝑡1
2

𝑐1
∗

0
. ∫

𝑡2

𝑞
2

+𝑖−1

(1+𝑡2)
𝑣+𝑞

2
+𝑖

𝑐∗

0
 𝑑𝑡2. 𝑑𝑡1      (A.3) 

where                     𝑐1
∗ =

𝑚′𝜏

𝜎2   

Again changing the variables 𝑔1 =
𝑡1

2
  and  𝑔2 =

𝑡2

(1+𝑡2)
  so that equation (A.3) becomes  

∬ 𝑓(𝑢1). 𝑓(𝑢2)𝑑𝑢1 𝑑𝑢2 =
𝑅1

∑ 𝑤𝑖(𝜆) ∞
𝑖=0

1

 Γ(
𝑞

2
+𝑖)Γ(

𝑣

2
)

× ∫ 𝑔1

𝑣+𝑞

2
+𝑖−1 𝑒−𝑔1  𝑑𝑔1

𝑐1
∗

2
0

. ∫ 𝑔2

𝑞

2
+𝑖−1𝑐∗

1+𝑐∗

0
 (1 −

𝑔2)
𝑣

2
−1𝑑𝑔2    (A.4) 

Now the integral parts in the above equation (A.4) may be written in terms of Incomplete 

Gamma and Beta function [see. Abramowitz and Stegun (1972)] 

        ∬ 𝑓(𝑢1). 𝑓(𝑢2)𝑑𝑢1 𝑑𝑢2𝑅1
  

     = ∑ 𝑤𝑖(𝜆) ∞
𝑖=0

1

 Γ(
𝑞

2
+𝑖)Γ(

𝑣

2
)

Γ (
𝑣+𝑞

2
+ 𝑖)  𝐺 (

𝑣+𝑞

2
+ 𝑖,

𝑐1
∗

2
)   𝐵 (

𝑞

2
+ 𝑖,

𝑣

2
) I 𝑞𝑐

𝑣+𝑞𝑐
(

𝑞

2
+ 𝑖,

𝑣

2
)  

Lastly, by putting the value of beta function, the above term may be written as 

∬ 𝑓(𝑢1). 𝑓(𝑢2)𝑑𝑢1 𝑑𝑢2𝑅1
= ∑ 𝑤𝑖(𝜆)𝐺 (

𝑣+𝑞

2
+ 𝑖,

𝑐1
∗

2
) I 𝑞𝑐

𝑣+𝑞𝑐
(

𝑞

2
+ 𝑖,

𝑣

2
) ∞

𝑖=0  (A.5) 

Similarly, on solving the second term in the equation (A.2) can be written as 

 ∬ 𝑓(𝑢1). 𝑓(𝑢2)𝑑𝑢1 𝑑𝑢2 
𝑅2

 

= ∑ 𝑤𝑖(𝜆) ∞
𝑖=0

Γ(
𝑣 + 𝑞

2
+𝑖)

 Γ(
𝑞

2
+𝑖)Γ(

𝑣

2
)

. ∫ 𝑔
𝑞

2
+𝑖−1(1 − 𝑔)

𝑣

2
−11

𝑞𝑐

𝑣+𝑞𝑐

𝐺 (
𝑣+𝑞

2
+ 𝑖,   

𝑚 𝜏

2𝜎2(1−𝑔)
) 𝑑𝑔 (A.6) 

Now by substituting the value of (A.5) and (A.6) in (A.2), the distribution function of the Pre-test 

estimator has been obtained as described in Theorem 1. 
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